
Configure Custom Scripts on CPAR 8.0

Contents

Introduction
Prerequisites
Requirements
Components Used
Background Information
Configure
Internal Script For Outgoing Traffic
Internal Script For Incoming Traffic
Create External Script

Introduction

This document describes how to customize Cisco Prime Access Registrar (CPAR) 8.0 behavior
with the use of scripts and extension points.

Prerequisites

Requirements

Cisco recommends that you have knowledge of these topics:

CPAR 8.0 administration●

Components Used

The information in this document is based on these software and hardware versions:

CPAR 8.0 installed on CentOS 6.5 64 bit ●

The information in this document was created from the devices in a specific lab environment. All of
the devices used in this document started with a cleared (default) configuration. If your network is
live, ensure that you understand the potential impact of any command.

Background Information

CPAR can be modified by both internal and external scripts. Scripts can be written in
C/C++/Java/TCL. Scripts can be used to modify processing of RADIUS, TACACS and DIAMETER
packets. Scripts can be referenced in CPAR in extension points. Extension points is a
setting/attribute that appears under some of the configuration elements and allows to reference a
script. As per reference guide CPAR is not responsible for any data loss, damages, etc caused by
custom scripts.

https://www.cisco.com/c/en/us/td/docs/net_mgmt/prime/access_registrar/8-0/reference/guide/reference/overview.html

Here is an example of two extension points under network device configuration

[//localhost/Radius/Clients/piborowi]

 Name = piborowi

 Description =

 Protocol = tacacs-and-radius

 IPAddress = 192.168.255.15

 SharedSecret = <encrypted>

 Type = NAS

 Vendor =

 IncomingScript~ = // Extension point for incomming traffic

 OutgoingScript~ = // Extension point for outgoing traffic

 EnableDynamicAuthorization = FALSE

 NetMask =

 EnableNotifications = FALSE

 EnforceTrafficThrottling = TRUE

According to CPAR administration guide, there are multiple available extension points. An
incoming script can be referenced at each of these extension points:

RADIUS server●

Vendor (of the immediate client)●

Client (individual NAS)●

NAS-Vendor-Behind-the-Proxy●

Client-Behind-the-Proxy●

Remote Server (of type RADIUS)●

Service●

An authentication or authorization script can be referenced at each of these extension points:

Group Authentication●

User Authentication●

Group Authorization●

User Authorization●

The outgoing script can be referenced at each of these extension points:

Service●

Client-Behind-the-Proxy●

NAS-Vendor-Behind-the-Proxy●

Client (individual NAS)●

NAS Vendor●

RADIUS server●

It is crucial to understand the order in which scripts are executed by CPAR since there are multiple
extension points. Refer to table 7-1 of administrator guide to see the order of 29 available
scripting/extension points.

An internal script is a one which is configured directly in CPAR CLI (aregcmd). It does not require
any external files and much programming knowledge. An external script is a one that is stored in a
file in operating system (CENTOS or RHEL) and is just referenced in CPAR CLI.

Configure

https://www.cisco.com/c/en/us/td/docs/net_mgmt/prime/access_registrar/8-0/admin/guide/admin_guide/extpoint.html#93962

Internal Script For Outgoing Traffic

In internal scripts you can use these modifiers:

1. +rsp: - adds and attribute to response

2. -rsp: - removes attribute from response

3. #rsp: - replaces attribute with new value

4. above can be used for req (request/incomming packet and env, which is environment
dictionary). Examples +req: or -env:

Add an internal Script under /Radius/Scripts. Configure two additional AVP to be returned with
Access-Accept packet: Filter-Id and Vendor-Specific one (to join voice domain).

--> ls -R

[//localhost/Radius/Scripts/addattr]

 Name = addattr

 Description =

 Language = internal

 Statements/

 1. +rsp:Filter-Id=PhoneACL

 2. +rsp:Cisco-AVPair=device-traffic-class=voice

--> ls -R

[Services/local-users]

 Name = local-users

 Description =

 Type = local

 IncomingScript~ =

 OutgoingScript~ = addattr

 OutagePolicy~ = RejectAll

 OutageScript~ =

 UserList = Default

 EnableDeviceAccess = True

 DefaultDeviceAccessAction~ = DenyAll

 DeviceAccessRules/

 1. switches

Test with the use of local radclient:

--> simple <username> <password>

p011

--> p011 send

p014

--> p014

Packet: code = Access-Accept, id = 18, length = 64, attributes =

 Filter-Id = PhoneACL

 Cisco-AVPair = device-traffic-class=voice

Traces:

07/31/2019 10:31:26.254: P2363: Running Service local-users's OutgoingScript: addattr

07/31/2019 10:31:26.254: P2363: Internal Script for 1 +rsp:Filter-Id=PhoneACL : Filter-Id =

PhoneACL

07/31/2019 10:31:26.254: P2363: Setting value PhoneACL for attribute Filter-Id

07/31/2019 10:31:26.254: P2363: Trace of Response Dictionary

07/31/2019 10:31:26.254: P2363: Trace of Access-Request packet

07/31/2019 10:31:26.254: P2363: identifier = 18

07/31/2019 10:31:26.254: P2363: length = 30

07/31/2019 10:31:26.254: P2363: respauth = fb:63:14:3f:c1:fb:ac:03:7d:16:29:61:ba:ef:13:4f

07/31/2019 10:31:26.254: P2363: Filter-Id = PhoneACL

07/31/2019 10:31:26.254: P2363: Internal Script for 2 +rsp:Cisco-AVPair=device-traffic-

class=voice : Cisco-AVPair = device-traffic-class=voice

07/31/2019 10:31:26.254: P2363: Setting value device-traffic-class=voice for attribute Cisco-

AVPair

07/31/2019 10:31:26.254: P2363: Trace of Response Dictionary

07/31/2019 10:31:26.254: P2363: Trace of Access-Request packet

07/31/2019 10:31:26.254: P2363: identifier = 18

07/31/2019 10:31:26.254: P2363: length = 64

07/31/2019 10:31:26.254: P2363: respauth = fb:63:14:3f:c1:fb:ac:03:7d:16:29:61:ba:ef:13:4f

07/31/2019 10:31:26.254: P2363: Filter-Id = PhoneACL

07/31/2019 10:31:26.254: P2363: Cisco-AVPair = device-traffic-class=voice

Internal Script For Incoming Traffic

Create a new script that replaces all usernames in format user@domain to anonymous and apply
it as incomming script for the service you use.

Configure:

--> cd /Radius/Scripts

--> add test

--> set language internal

--> cd Statements

--> add 1

--> cd 1

--> set statements "#req:User-Name=~(.*)(@[a-z]+.[a-z]+)~\anonymous"

--> ls -R

[//localhost/Radius/Scripts/test]

 Name = test

 Description =

 Language = internal

 Statements/

 1. #env:User-Name=~(.*)~anonymous

--> ls -R /Radius/Services/employee-service/

[/Radius/Services/employee-service]

 Name = employee-service

 Description =

 Type = local

 IncomingScript~ = test

 OutgoingScript~ =

 OutagePolicy~ = RejectAll

 OutageScript~ =

 UserList = default

 EnableDeviceAccess = FALSE

 DefaultDeviceAccessAction~ = DenyAll

Test with radclient (request is most probably rejected because the username is changed to
anonymous):

--> simple <username>@cisco.com <password>

p01e

--> p01e

Packet: code = Access-Request, id = 27, length = 72, attributes =

User-Name = <username>@cisco.com

User-Password = <password>

NAS-Identifier = localhost

NAS-Port = 7

--> p01e send

p020

--> p020

Packet: code = Access-Reject, id = 27, length = 35, attributes =

 Reply-Message = Access Denied

Trace:

Before employee-service is executed, three scripts are invoked. First CPAR invokes
CiscoIncomingScript, then it invokes ParseServiceHints which is attached to localhost
Client/Network Device configuration. It extracts username from packet and puts it in environment
dictionary. Second script, test is invoked and username in environment dictionary is changed from
<username> to anonymous

localhost client:

[//localhost/Radius/Clients/localhost]

 Name = localhost

 Description =

 Protocol = radius

 IPAddress = 127.0.0.1

 SharedSecret = <encrypted>

 Type = NAS+Proxy

 Vendor = Cisco

 IncomingScript~ = ParseServiceHints

 OutgoingScript~ =

 EnableDynamicAuthorization = FALSE

 NetMask =

 EnableNotifications = FALSE

 EnforceTrafficThrottling = TRUE

Trace output:

07/31/2019 11:38:53.522: P2855: PolicyEngine: [SelectPolicy] Successful

07/31/2019 11:38:53.522: P2855: Using Client: localhost

07/31/2019 11:38:53.522: P2855: Using Vendor: Cisco

07/31/2019 11:38:53.522: P2855: Running Vendor Cisco's IncomingScript: CiscoIncomingScript

07/31/2019 11:38:53.522: P2855: Running Client localhost IncomingScript: ParseServiceHints

07/31/2019 11:38:53.522: P2855: Rex: environ->get("Request-Type") -> "Access-Request"

07/31/2019 11:38:53.522: P2855: Rex: environ->get("Request-Type") -> "Access-Request"

07/31/2019 11:38:53.522: P2855: Rex: environ->get("User-Name") -> "<username>"

07/31/2019 11:38:53.522: P2855: Authenticating and Authorizing with Service employee-service

07/31/2019 11:38:53.522: P2855: Running Service employee-service's IncomingScript: test

07/31/2019 11:38:53.522: P2855: Numbered attribute got for the radius / tacacs packet. ignoring

User-Name

07/31/2019 11:38:53.523: P2855: Numbered attribute got for the radius / tacacs packet. ignoring

User-Name

07/31/2019 11:38:53.523: P2855: Numbered attribute got for the radius / tacacs packet. ignoring

User-Name

07/31/2019 11:38:53.523: P2855: Internal Script for 1 #env:User-Name=~(.*)~anonymous : User-

Name = anonymous

07/31/2019 11:38:53.523: P2855: Setting value anonymous for attribute User-Name

07/31/2019 11:38:53.523: P2855: Trace of Environment Dictionary

07/31/2019 11:38:53.523: P2855: User-Name = anonymous

07/31/2019 11:38:53.523: P2855: NAS-Name-And-IPAddress = localhost (127.0.0.1)

07/31/2019 11:38:53.523: P2855: Authorization-Service = employee-service

07/31/2019 11:38:53.523: P2855: Source-Port = 51169

07/31/2019 11:38:53.523: P2855: Authentication-Service = employee-service

07/31/2019 11:38:53.523: P2855: Trace-Level = 1000

07/31/2019 11:38:53.523: P2855: Destination-Port = 1812

07/31/2019 11:38:53.523: P2855: Destination-IP-Address = 127.0.0.1

07/31/2019 11:38:53.523: P2855: Source-IP-Address = 127.0.0.1

07/31/2019 11:38:53.523: P2855: Enforce-Traffic-Throttling = TRUE

07/31/2019 11:38:53.523: P2855: Request-Type = Access-Request

07/31/2019 11:38:53.523: P2855: Script-Level = 6

07/31/2019 11:38:53.523: P2855: Provider-Identifier = Default

07/31/2019 11:38:53.523: P2855: Request-Authenticator =

5f:62:5a:72:0f:7b:a2:2a:9c:06:ba:2e:bd:f4:e4:4b

07/31/2019 11:38:53.523: P2855: Realm = cisco.com

07/31/2019 11:38:53.523: P2855: Getting User anonymous's UserRecord from UserList Default

07/31/2019 11:38:53.523: P2855: Failed to get User anonymous's UserRecord from UserList Default

07/31/2019 11:38:53.523: P2855: Running Vendor Cisco's OutgoingScript: CiscoOutgoingScript

07/31/2019 11:38:53.523: P2855: Trace of Access-Reject packet

07/31/2019 11:38:53.523: P2855: identifier = 27

07/31/2019 11:38:53.523: P2855: length = 35

07/31/2019 11:38:53.523: P2855: respauth = d3:7d:b3:f6:05:47:2c:66:d9:c0:01:7d:67:d7:93:99

07/31/2019 11:38:53.523: P2855: Reply-Message = Access Denied

07/31/2019 11:38:53.523: P2855: Sending response to 127.0.0.1

Create External Script

Add a file nadip.tcl to /opt/CSCOar/scripts/radius/tcl/ directory and add this content:

[root@piborowi-cpar80-16 tcl]# cat /opt/CSCOar/scripts/radius/tcl/nadip.tcl

proc UpdateNASIP {request response environ} {

$request trace 2 "TCL CUSTOM_SCRIPT Updating NAS IP ADDRESS"

$request trace 2 "Before put: " [$request get NAS-IP-Address]

$request put NAS-IP-Address 1.2.3.4

$request trace 2 "After put: " [$request get NAS-IP-Address]

}

Content of nadip.tcl explained line by line:

Line #1 Procedure definition and arguments. Request, response, environ and three available
dictionaries where you can modify session/packet data.

Line #2 Debug line for script to be printed as trace level 2.

Line #3 Content of NAS-IP-Address attribute in request dictionary before you set this value.

Line #4 Set Nas-IP-Address attribute in request dictionary to value 1.2.3.4.

Line #5 Print NAS-IP-Address attribute again.

Once script is created and saved in operating system, configure CPAR reference to the script. Set
language as TCL, filename must be exact filename with extension (in this case it is nadip.tcl).
EntryPoint is the name of the procedure in the file that you would like to execute as a script.
Reference created CPAR script under service (incomingScript) and test with radclient.

Lines #2, #3, #5 can be observed in the trace:

--> ls -R /Radius/scripts/nadipaddress/

[/Radius/Scripts/nadipaddress]

 Name = nadipaddress

 Description =

 Language = tcl <<<<<<<<

 Filename = nadip.tcl <<<<<<<<

 EntryPoint = UpdateNASIP <<<<<<<<

 InitEntryPoint =

 InitEntryPointArgs =

--> ls -R /Radius/services/employee-service/

[/Radius/Services/employee-service]

 Name = employee-service

 Description =

 Type = local

 IncomingScript~ = nadipaddress <<<<<<<<

 OutgoingScript~ =

 OutagePolicy~ = RejectAll

 OutageScript~ =

 UserList = default

 EnableDeviceAccess = FALSE

 DefaultDeviceAccessAction~ = DenyAll

Trace:

07/31/2019 13:40:53.615: P3490: Running Service employee-service's IncomingScript: nadipaddress

07/31/2019 13:40:53.615: P3490: TCL CUSTOM_SCRIPT Updating NAS IP ADDRESS

07/31/2019 13:40:53.616: P3490: Tcl: request trace 2 TCL CUSTOM_SCRIPT Updating NAS IP

ADDRESS -> OK

07/31/2019 13:40:53.616: P3490: Tcl: request get NAS-IP-Address -> <empty>

07/31/2019 13:40:53.616: P3490: Before put:

07/31/2019 13:40:53.616: P3490: Tcl: request trace 2 Before put: -> OK

07/31/2019 13:40:53.616: P3490: Tcl: request put NAS-IP-Address 1.2.3.4 -> OK

07/31/2019 13:40:53.616: P3490: Tcl: request get NAS-IP-Address -> 1.2.3.4

07/31/2019 13:40:53.616: P3490: After put: 1.2.3.4

07/31/2019 13:40:53.616: P3490: Tcl: request trace 2 After put: 1.2.3.4 -> OK

	Configure Custom Scripts on CPAR 8.0
	Contents
	Introduction
	Prerequisites
	Requirements
	Components Used

	Background Information
	Configure
	Internal Script For Outgoing Traffic
	Internal Script For Incoming Traffic
	Create External Script

